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a b s t r a c t

A micromechanical analysis of the representative volume element of a unidirectional hybrid composite is

performed using finite element method. The fibers are assumed to be circular and packed in a hexagonal

array. The effects of volume fractions of the two different fibers used and also their relative locations

within the unit cell are studied. Analytical results are obtained for all the elastic constants. Modified

Halpin–Tsai equations are proposed for predicting the transverse and shear moduli of hybrid composites.

Variability in mechanical properties due to different locations of the two fibers for the same volume frac-

tions was studied. It is found that the variability in elastic constants and longitudinal strength properties

was negligible. However, there was significant variability in the transverse strength properties. The

results for hybrid composites are compared with single fiber composites.

Ó 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Hybrid composites contain more than one type of fiber in a sin-

gle matrix material. In principle, several different fiber types may

be incorporated into a hybrid, but it is more likely that a combina-

tion of only two types of fibers would be most beneficial [1]. They

have been developed as a logical sequel to conventional composites

containing one fiber. Hybrid composites have unique features that

can be used to meet various design requirements in a more eco-

nomical way than conventional composites. This is because expen-

sive fibers like graphite and boron can be partially replaced by less

expensive fibers such as glass and Kevlar [2]. Some of the specific

advantages of hybrid composites over conventional composites in-

clude balanced effective properties, reduced weight and/or cost,

with improvement in fatigue and impact properties [1].

Experimental techniques can be employed to understand the ef-

fects of various fibers, their volume fractions and matrix properties

in hybrid composites. However, these experiments require fabrica-

tion of various composites which are time consuming and cost pro-

hibitive. Advances in computational micromechanics allow us to

study the various hybrid systems by using finite element simula-

tions and it is the goal of this paper.

Hybrid composites have been studied for more than 30 years.

Numerous experimental works have been conducted to study the

effect of hybridization on the effective properties of the composite

[3–11]. The mechanical properties of hybrid short fiber composites

can be evaluated using the rule of hybrid mixtures (RoHM) equa-

tion, which is widely used to predict the strength and modulus

of hybrid composites [3]. It is shown however, that RoHM works

best for longitudinal modulus of the hybrid composites. Since, elas-

tic constants of a composite are volume averaged over the constit-

uent microphases, the overall stiffness for a given fiber volume

fraction is not affected much by the variability in fiber location.

The strength values on the other hand are not only functions of

strength of the constituents; they are also very much dependent

on the fiber/matrix interaction and interface quality. In tensile test,

any minor (microscopic) imperfection on the specimenmay lead to

stress build-up and failure could not be predicted directly by RoHM

equations [12].

The computational model presented in this paper considers ran-

dom fiber location inside a representative volume element for a gi-

ven volume fraction ratio of fibers, in this case, carbon and glass.

The variability in fiber location seems to have considerable effect

on the transverse strength of the hybrid composites. For the trans-

verse stiffness and shear moduli, a semi-empirical relation similar

to Halpin–Tsai equations has been derived. Direct Micromechanics

Method (DMM) is used for predicting strength, which is based on

first element failure method; although conservative, it provides a

good estimate for failure initiation [13].

1.1. Model for hybrid composite

The fiber orientation depends on processing conditions and may

vary from random in-plane and partially aligned to approximately
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uniaxial [1]. The fiber packing arrangement, for most composites, is

random in nature, so that the properties are approximately same in

any direction perpendicular to the fiber (i.e. properties along the 2-

direction and 3-direction are same, and is invariant with rotations

about the 1-axis), resulting in transverse isotropy [14]. For this pa-

per, it is assumed that the fibers are arranged in a hexagonal pat-

tern and the epoxy matrix fills up the remaining space in the

representative volume element (RVE). Hexagonal pattern was se-

lected because it can more accurately represent transverse isotropy

as compared to a square arrangement. The RVE consists of 50 fi-

bers. Multiple fibers were selected to allow randomization of fiber

location. Hybrid composites are created by varying the number of

fibers of carbon and glass to obtain hybrid composites of different

volume fractions.

A cross section of a hybrid composite of polypropylene rein-

forced with short glass and carbon fibers is shown in Fig. 1 [3].

The black circles represent glass fibers (Vfg 6.25%) and the white

circles represent carbon fibers (Vfc 18.75%). In order to represent

such an arrangement, we consider the schematic of the RVE as

shown in Fig. 2. Green and red represent two different fiber mate-

rials, while the matrix is shown in white. Also, it is assumed that

the radii of the fibers are the same and only the count of carbon

and glass fibers vary. This gives us much more flexibility in creat-

ing the finite element mesh. Although, this RVE architecture is a lot

simplistic and entails some basic assumptions like same size and

location of the fibers and absence of voids but there is still a lot

to earn from the parameters that have been used.

The properties of the composite are independent of the 1-direc-

tion, hence a 2D analysis is performed. We have assumed here that

the fibers remain unidirectional with no fiber undulation and wav-

iness. An overall fiber volume fraction of 60% is assumed for all the

composites analyzed in this paper. The proportions of the rein-

forcements have been varied to obtain five hybrid composites,

keeping the total volume fraction of reinforcement phases con-

stant. The volume fraction of any particular reinforcement, say A,

was determined by the relation

V fA ¼ 0:6
NA

NT

� �

ð1Þ

where N is the number of fibers of reinforcement A and NT is the to-

tal number of fibers. (see Table 1).

2. Analysis for elastic constants

The RVE of the composite is analyzed using commercially avail-

able finite element software (ABAQUS/CAE 6.9-2). The composite is

assumed to be under a state of uniform strain at the macroscopic

level called macroscale strains or macrostrains, and the corre-

sponding stresses are called macrostresses. However, the micro-

stresses, which are the actual stresses inside the RVE can have a

spatial variation. The macrostresses are average stress required

to produce a given state of macro-deformations, and they can be

computed using finite element method. The macrostresses and

macrostrain follow the relation

frMg ¼ ½C�feMg ð2Þ

where [C] is the elastic constant of the homogenized composite,

also known as the stiffness matrix. In this method, the RVE is sub-

jected to six independent macrostrains. For each applied non-zero

macrostrain, it is also subjected to periodic boundary conditions

such that all other macrostrains are zero. The six cases are: Case

1: eM11 ¼ 1; Case 2: eM22 ¼ 1; Case 3: eM33 ¼ 1; Case 4: cM12 ¼ 1; Case

5: cM13 ¼ 1; Case 6: cM23 ¼ 1 [15], where the subscripts 1, 2, 3 are par-

allel to the material principal directions, as shown in Fig. 3, and the

superscript M stands for macrostress or macrostrain.

2.1. Finite element analysis

For case 1, 2 and 4, a mixture of three and four-node plane

strain elements, CPE3/CPE4 and for case 3, a mixture of three and

four node generalized plane strain elements, CPEG3/CPEG4 were

used. For cases 5 and 6 (longitudinal shear), three and four node

shell elements were used, because out of plane displacements have

to be applied for this case. Periodic boundary conditions (PBC)

were applied on opposite faces of the RVE which are described in

Table 2. Appropriate constraints on the RVE depend on the loading

condition and have been determined by symmetry and periodicity

conditions in [16]. For each strain case, six microstresses were cal-

culated, three normal and three shear stresses in the 1-2-3 direc-

tions, in each element in the finite element model and volume

averaged to find the macrostress for the RVE. The finite element

model used is shown in Fig. 3, which contains 27,000 elements.

The [C] matrix can be inverted to obtain the compliance matrix

or [S] matrix, from which the elastic constants can be computed

using the following relation

½C�ÿ1 ¼ ½S� ¼

1
E1

ÿm12
E1

ÿm13
E1

0 0 0

ÿm21
E2

1
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ÿm23
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Fig. 1. Cross sectional area of a composite with Vfc 18.75% and Vfg (glass) = 6.25%

[3].

Fig. 2. RVE for Hybrid composite. fibers of two different reinforcements have

different colors. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

Table 1

Specimen numbering for the Hybrid Composites.

Specimen Vfc Vfg Vf

H1 0.54 0.06 0.6

H2 0.42 0.18 0.6

H3 0.3 0.3 0.6

H4 0.18 0.42 0.6

H5 0.06 0.54 0.6
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In the above finite element model opposite faces of the RVE

must have corresponding nodes for the periodic boundary condi-

tions to be enforced using multi-point constraints. The material

properties for the various constituents are listed in Table 3. For a

composite to have transversely isotropic behavior in the 2–3 plane,

it has to follow the relation

G23 ¼
E2

2ð1þ m23Þ
ð4Þ

As shown later in Table 8, all the composites including the hy-

brid composites studied in this paper closely follow transverse iso-

tropic behavior. One reason for this may be the hexagonal packing

of the fiber, which represents better isotropy in the 2–3 plane. As

for the hybrid composites, 10 samples of each volume fraction ratio

were considered, with the fiber locations randomly selected for

each sample. The mean and standard deviation of the results were

studied.

Rule of hybrid mixtures was used to predict the longitudinal

modulus E1 and the longitudinal Poisson’s ratios, m12 and m13 for

all the composites. For the transverse modulus E2, and the shear

moduli G12, G13 and G23, the Halpin–Tsai equation was modified

to predict the results obtained from finite element method. As will

be shown later the modified Halpin–Tsai equations agree with rea-

sonable accuracy for the hybrid composites. For all the elastic con-

stants, samples were generated with random fiber locations and

results obtained for all the samples were studied to evaluate the ef-

fect of hybridization.

3. Evaluation of strength properties

Failure is predicted using micromechanical failure analysis,

which inspects every element in the finite element model for fail-

ure, also known as the Direct Micromechanics (DMM) approach to

failure prediction. A flowchart that describes DMM can be found in

[15]. Thus for a given state of macrostress, we need to calculate

microstresses in every element in the RVE. The macrostrain for a

given state of macrostress can be obtained from the constitutive

relation for that composite using

feMg ¼ ½Cÿ1�frMg ð5Þ

From the unit cell analysis as discussed before, we have the

microstresses in every element for six independent unit macro-

strain cases. Thus, the microstresses for a given macrostress state

can be obtained from principle of superposition as follows:

frðeÞg ¼ ½FðeÞ�feMg ð6Þ

where {r(e)} is the microstress in Element e, and the matrix [F(e)]

represents the microstresses in Element e for various states of unit

macrostrains. For example, the first column in Fij contains the six

microstresses in Element e caused by unit macrostrain eM11. How-

ever, in the present method it is assumed that there exist no ther-

mal residual stresses in the material. Also, it is assumed that

when the first element fails, the composite has failed.

It is assumed, that failure criteria for fibers and matrix phases

are known. We have considered quadratic interaction failure crite-

ria for carbon fiber which is the one proposed by Hashin for unidi-

rectional fiber composites [18] and maximum principal stress

failure criteria for glass fiber and epoxy.

4. Results and discussions

We have divided this section into two parts; one for the elastic

constants and the other for the strength properties. Results ob-

tained from analytical formulations, wherever applicable, have

been compared with FEA results.

Fig. 3. Finite element model of the RVE and mesh of the repetitive block.

Table 2

Periodic boundary conditions for square unit cell. L1, L2 and the coordinate system is shown in Fig. 2.

Case Constraint between left and right faces Constraint between top and bottom faces Out of plane strains

e11 = 1 ui(L2, x3) ÿ ui(0, x3) = 0, i = 2, 3 ui(x2, L3) ÿ ui(x2, 0) = 0, i = 2, 3 e11 = 1, c12 = 0, c13 = 0

e22 = 1 u2(L2, x3) ÿ u2(0, x3) = L2 u2(x2, L3) ÿ u2(x2, 0) = 0 e11 = 0, c12 = 0, c13 = 0

u3(L2, x3) ÿ u3(0, x3) = 0 u3(x2, L3) ÿ u3(x2, 0) = 0

e33 = 1 u2(L2, x3) ÿ u2(0, x3) = 0 u2(x2, L3) ÿ u2(x2, 0) = 0 e11 = 0, c12 = 0, c13 = 0

u3(L2, x3) ÿ u3(0, x3) = 0 u3(x2, L3) ÿ u3(x2, 0) = L3
c23 = 1 u2(L2, x3) ÿ u2(0, x3) = 0 u2(x2, L3) ÿ u2(x2, 0) = L3/2 e11 = 0, c12 = 0, c13 = 0

u3(L2, x3) ÿ u3(0, x3) = L2/2 u3(x2, L3) ÿ u3(x2, 0) = 0

c13 = 1 u1(L2, x3) ÿ u1(0, x3) = 0 u1(x2, L3) ÿ u1(x2, 0) = L3 e11 = 0, c12 = 0, c13 = 1

u2 = 0; u3 = 0, uR1 = 0, uR2 = 0; uR3 = 0 (for all nodes)

c12 = 1 u1(L2, x3) ÿ u1(0, x3) = L2 u1(x2, L3) ÿ u1(x2, 0) = 0 e11 = 0, c12 = 1, c13 = 0

u2 = 0; u3 = 0, uR1 = 0, uR2 = 0; uR3 = 0 (for all nodes)

Table 3

Elastic constants of various constituents [17].

Property E-glass fiber Carbon fiber (IM7) Epoxy

E1 (GPa) 72.4 263 3.5

E2, E3 (GPa) 72.4 19 3.5

G12, G13 (GPa) 30.2 27.6 1.29

G23 (GPa) 30.2 7.04 1.29

m12, m13 0.2 0.2 0.35

m23 0.2 0.35 0.35
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4.1. Elastic properties

The longitudinal modulus E1 was calculated for the composites

by varying the volume fraction of the reinforcements. It was ob-

served that E1 varies linearly with the variation of volume fraction.

E1 is plotted in Fig. 4 with the volume fraction of carbon varying

from 0 to 0.6 as we move from left to right. E1 for the composites

are also tabulated in Table 4. Results obtained from the RoHM are

also presented in the same table. The RoHM can be stated as

E1 ¼ E1cV fc þ E1gV fg þ EmVm ð7Þ

where E1c, E1g and Em refers to the modulus values for carbon, glass

and matrix respectively, and Vfc, Vfg and Vm refer to the volume frac-

tion carbon, glass and matrix respectively. It can be seen that RoHM

predicts the longitudinal moduli with very high accuracy.

The transverse modulus E2 however, cannot be predicted accu-

rately using equations of the form (7). A general method to esti-

mate E2 involves the use of semi-empirical equations such as the

Halpin–Tsai equation that are adjusted to match experimental re-

sults. The Halpin–Tsai equation for single fiber composite is [14]

E2

Em

¼
1þ ngV f

1ÿ gV f

ð8Þ

where

g ¼ ððEf =EmÞ þ 1Þ=ððEf =EmÞ þ nÞ

In the equations above, n is a curve-fitting parameter, which is

dependent on the fiber packing arrangement. For the hybrid com-

posites, we propose a modification to the Halpin–Tsai Eq. (8),

which incorporates the volume fractions of all the reinforcements

as follows:

E2

Em

¼
1þ nðgcV fc þ ggV fgÞ

1ÿ ðgcV fc þ ggV fgÞ
ð9Þ

where,

gc ¼ ððEfc=EmÞ ÿ 1Þ=ððEfc=EmÞ þ nÞ and

gg ¼ ððEfg=EmÞ ÿ 1Þ=ððEfg=EmÞ þ nÞ

Here the subscripts ‘c’ and ‘g’ refer to carbon and glass respec-

tively. The optimum value of nwas determined using a least square

error procedure. It was found that n = 1.165 yielded the best results

for E2 including single fiber composites.

In Table 5 we have the E2 values computed from both the finite

element analysis and modified Halpin–Tsai equation. We see that

(9) does a good job of predicting the transverse modulus of the

composites. The variation of E2 with increasing volume fraction

of carbon is shown in Fig. 5.

The poissons’ ratio m12 and m13 were computed for all compos-

ites and they were nearly equal for all cases. It was found that

these two Poisson’s ratios had a linear variation when volume frac-

tion of carbon was gradually increased, as seen in Fig. 6. The RoHM

for Poisson’s ratios can be stated as

m12 ¼ m12fcV fc þ m12fgV fg þ mmVm ð10Þ

Once again RoHM provides a good prediction of Poisson’s ratio,

where the Poisson’s ratio of the composite, m12 can be found out

using (10), where m12fc, m12fg, mm refers to the Poisson’s ratio of car-

bon, glass and matrix respectively.

A approach similar to the transverse modulus was considered

for predicting the shear moduli, G12, G13 and G23. The modified Hal-

pin–Tsai relation for predicting the shear moduli is as shown

below:

G

Gm

¼
1þ nðgcV fc þ ggV fgÞ

1ÿ ðgcV fc þ ggV fgÞ
ð11Þ

where,

gc ¼ ððGfc=GmÞ ÿ 1Þ=ððGfc=GmÞ þ nÞ and

gg ¼ ððGfg=GmÞ ÿ 1Þ=ððGfg=GmÞ þ nÞ

In the above equation G refers to composite shear modulus (G12,

G13 or G23). For each case, the corresponding fiber shear moduli

have to be considered in calculating the parameter g. The optimal

value of n was found out to be 1.01 for G12 and G13, and 0.9 for G23.

The corresponding plots for variation of the three shear moduli

with volume fraction of carbon are shown in Figs. 7 and 8. The

moduli values calculated using modified Halpin–Tsai equation

and the finite element analysis are also presented in Tables 6 and 7.

Poisson’s ratio m23 is calculated and variation with changes in

reinforcement volume fraction is studied. An analytical expression

for m23 is not required, since for transverse isotropic composites m23
can be calculated from G23 and E2. Since, we have an analytical

expression for predicting E2 and G23, we can predict m23 once we

have the other two material properties. The variation of m23 with

volume fraction of carbon is as shown in Fig. 9.

As mentioned before, 10 random fiber locations inside the RVE

were selected for each volume fraction for the hybrid composites.

It was observed that none of the elastic constants showed signifi-

cant variability with fiber location. The Poisson’s ratio m23 had

some variability, as shown in Fig. 9 but it was observed that the

coefficient of variation for all the elastic constants were negligibly

small. This can be attributed to the fact that elastic constants were

calculated by volume averaging the microstresses for all the ele-

ments. Hence, the spatial variation of the microstresses does not

have significant effect on the elastic constants. Table 8 shows that

all the composites in the present study follow transverse isotropic

behavior.

4.2. Strength properties

The material properties are as per Table 9. Composite failure

can be characterized as fiber failure or matrix failure, considering

our assumption that the interface does not fail. First we will con-

sider loading in the longitudinal or fiber direction. In this case,

since fiber failure strain, eðþÞ

f1 is higher than matrix failure strain,

e
ðþÞ
m , we can conclude that matrix will govern the failure. So, com-

posite failure will occur at the strain level corresponding to the

matrix failure strain, eðþÞ
m . Hence, longitudinal strength of the com-

posite can be predicted from the following relation

S
ðþÞ
L ¼ E1e

ðþÞ
m ð12Þ

where E1 is the longitudinal moduli of the composite. This equation

gives a good measure of the failure strength for initiation of failure.

0 0.06 0.18 0.3 0.42 0.54 0.6
0

20

40

60

80

100

120

140

160

Volume fraction of carbon, V
fc

L
o
n
g
it

u
d
in

al
 M

o
d
u
lu

s,
 E

1
 (

G
P

a)

E
1
 (FEA)

E
1
 (RoHM)
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The results from finite element analysis are plotted against the

volume fraction of carbon in Fig. 10. SðþÞ
L has been calculated from

(12) and presented in Table 10. As can be observed, the longitudinal

strength varies linearly with volume fraction and can be predicted

with reasonable accuracy.

Longitudinal compressive strength of the composites were cal-

culated and plotted with volume fraction of carbon as shown in

Fig. 11. Both strengths in the longitudinal direction show a linear

dependence with volume fraction. It must be noted, however, that

for the compressive strength, no microbuckling of the fiber or

instability analysis was performed, and failure was due only to

stresses. Detailed micromechanical analysis of failure modes such

as microbuckling or kinking can be found in [20,21]. Furthermore,

the longitudinal strengths show no variability with fiber location.

The linear nature of the plot can be explained from observing

(12) which depends on E1 of the composite. As seen before, E1

Table 4

Longitudinal moduli E1 for various composites in GPa units. H1� � �H5 refer to hybrid composites with five different sets of volume fraction as given in Table 1.

Type of composite Carbon/epoxy Hybrid composites Glass/epoxy

H1 H2 H3 H4 H5

FE analysis 159 148 125 102 79.0 56.2 44.8

RoHM 159.2 147.7 124.9 102 79.1 56.3 44.8

% Diff (absolute) 0.16 0.16 0.16 0.15 0.14 0.13 0.13

Table 5

Transverse moduli E2 (GPa) for various composites.

Type of composite Carbon/epoxy Hybrid Glass/epoxy

H1 H2 H3 H4 H5

FE analysis 8.77 9.05 9.66 10.33 11.05 11.82 12.21

Modified Halpin Tsai 8.59 8.88 9.52 10.22 11 11.86 12.33

% Diff (absolute) 2.07 1.84 1.47 1.08 0.5 0.37 1.02
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has a linear variation with volume fraction of the fiber, hence the

strengths follow similar pattern since e
ðþÞ
m is a constant for all the

samples.

A theory of elasticity analysis for a transverse normal loading of

a doubly periodic rectangular array of elastic filaments can be

found in [22]. However, a simple analytical model for transverse

strength of one reinforcement composite can be found in [14].

The relation has been used to predict the strength of the two phase

composites, pure carbon/epoxy and glass/epoxy. When compared

with the DMM strength, it has a difference of 15%.

Transverse tensile and compressive strength obtained from

DMM approach are plotted in Figs. 12 and 13 with volume fraction

of carbon. As observed, transverse strength of the composite re-

duces when a second reinforcement is added. Hybridization there-

fore results in lowering the transverse strength. Another very

Table 6

Transverse moduli G12 (G13) (GPa) for composites.

Type of composite Carbon/epoxy Hybrid Glass/epoxy

H1 H2 H3 H4 H5

FE analysis 4.41 4.41 4.43 4.44 4.45 4.46 4.47

Modified Halpin–Tsai 4.41 4.42 4.43 4.44 4.45 4.46 4.47

% Diff (absolute) 0.05 0.04 0.04 0 0.06 0.06 0.05

Table 7

Transverse moduli G23 (GPa) for composites.

Type of composite Carbon/epoxy Hybrid Glass/epoxy

H1 H2 H3 H4 H5

FE analysis 3.04 3.14 3.36 3.60 3.88 4.19 4.35

Modified Halpin Tsai 3.06 3.16 3.38 3.62 3.88 4.17 4.32

% Diff (absolute) 0.91 0.78 0.59 0.3 0.17 0.63 0.71
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Fig. 11. Variation of SðÿÞ
L with volume fraction of carbon.

Table 8

Comparison of G23 to test transverse isotropy.

Specimen G23 (FEA) E2/2 (1 + m23) % Difference

Carbon/epoxy 3.04 3.05 0.30

Hybrid composites H1 3.14 3.15 0.32

H2 3.36 3.37 0.30

H3 3.60 3.62 0.55

H4 3.88 3.90 0.51

H5 4.19 4.20 0.24

Glass/epoxy 4.35 4.37 0.37

Table 9

Strengths of constituent materials [17,19].

Carbon Glass Epoxy

Longitudinal tensile strengths (MPa) 4120 1104 –

Longitudinal compressive strength (MPa) 2990 1104 –

Transverse tensile and compressive strengths

(MPa)

298 1104 –

Shear strength (MPa) 1760 460 93

Tensile strength (MPa) – – 49

Compressive strength (MPa) – – 121
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Fig. 10. Variation of SðþÞ
L with volume fraction of carbon.
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significant observation is, randomization of fiber locations inside

the RVE, brings about significant variability in the strength values.

This observation can be explained as follows. When glass fiber

is introduced in a pure carbon/epoxy composite, it behaves as an

inclusion in a continuous media and causes local stress concentra-

tion. This is because of the transverse modulus of glass which is

very high compared to carbon. Hence when 6% glass fiber is intro-

duced in a pure carbon/epoxy composite, we see a larger strength

drop, than when 6% carbon fiber is introduced in glass/epoxy

composite.

A very similar variation is observed for the transverse compres-

sive strength of the composites. Once again the drop in strength

when glass fiber is introduced in carbon/epoxy, is significantly

higher than when carbon is introduced into glass/epoxy. Elasticity

analysis of an array of elastic filaments subjected to longitudinal

shear has been studies by Adam and Doner [23]. Transverse shear

strengths S12 and S13 have been calculated for hybrid composites

and presented in Figs. 14 and 15. It is observed that there is negli-

gible variation of transverse shear strengths, owing to the fact that

shear strengths are controlled by matrix strength and are essen-

tially same for all the composites.

It should be however noticed that S12 and S13 are not the same

for any composite. This is mostly due to the asymmetric hexagonal

arrangement of the fibers in the 1 and 2 directions. Variation of the

shear strength S23 is also presented for hybrid composites in

Fig. 16. Since, S23 is an in-plane property in the transverse

directions, follows a very similar trend as the transverse tensile

and compressive strengths as shown before in Figs. 13 and 14.

It is important to note here that strengths unlike the elastic con-

stants are not equal in 2 and 3 directions. This is owing to the fact

that, the RVE is not symmetric about 2 and 3 directions. Although
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average stresses across the RVE were equal, the microstresses in-

side the RVE are not. A comparison of the variation of S
ðþÞ
T and

S
ðÿÞ
T are made for 2 and 3 directions and presented in Figs. 17 and

18 respectively. Here S
ðþÞ
T2 , S

ðÿÞ
T2 and S

ðþÞ
T3 , S

ðÿÞ
T3 represent transverse

tensile and compressive stresses in the 2 and 3 directions

respectively.

In order to explain the effect of hybridization on the transverse

strength in more detail, failed elements have been identified in the

Figs. 19 and 20. The DMM method of failure is continued till 1% of

the volume of the unit cell was failed. Glass fiber is red and carbon

green in the above figures. It can be observed that the microstress

concentration is always near the region surrounding the glass fi-

bers. This shows that, introduction of glass causes a high local

stress concentration owing to its high transverse modulus and thus

strength of the composites drop on addition of glass.

All the strength values computed using the present model are

presented in Table 11. For the hybrid composite, results for speci-

men H3 have been provided in this table. As can be observed, both

transverse tensile and compressive strengths for hybrid compos-

ites are lower than the binary composites. Arithmetic mean, stan-

dard deviation and coefficients of variation for strength properties

are presented in Table 12. Longitudinal tensile and compressive

strengths had no dependence on the fiber location. On the other
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Fig. 19. 19(a–d) Failed elements for random samples for specimens H1, H2, H3 and H4.

Fig. 20. Failed elements for specimen 5.

S. Banerjee, B.V. Sankar / Composites: Part B 58 (2014) 318–327 325



hand, significant variation in the transverse tensile and compres-

sive strengths can be observed as the fibers were randomized. As

mentioned before, inclusion of a second fiber in a composite causes

stress concentration. This stress concentration depends on the

transverse modulus of the fiber introduced.

5. Conclusion

A computational model for hybrid composites using circular fi-

bers in a hexagonal array has been proposed. Some of the param-

eters that play a key role in studying the hybrid effect on the

stiffness and strength properties have been incorporated. The stiff-

ness properties show a smooth linear variation with the change in

volume fraction. Also relative location of the different fibers in the

unit cell did not affect the stiffness properties by a large amount.

The reason for this behavior might be because of the fact that stiff-

ness being a volume averaged quantity, does not depend on the po-

sition of the fibers but the effective volume fraction of the

reinforcement only. It has been shown that RoHM predicts the

longitudinal modulus, longitudinal poisson’s ratios and longitudi-

nal shear modulus, with very good accuracy. For predicting the

transverse moduli, transverse poisson’s ratio and the transverse

shear moduli, modified Halpin–Tsai equation has been proposed,

that matches the finite element results with reasonable accuracy.

Longitudinal tensile and compressive strengths vary linearly

with the volume fraction of the reinforcement, and are dependent

on the longitudinal modulus and the least strain to failure of the

constituent. All other strengths show variability with the fiber

location inside the RVE. This is attributed to the transverse modu-

lus of the introduced fibers to form the hybrid composite, which

causes a local stress concentration, resulting in the failure of the

neighboring matrix elements.

Experimental data for hybrids has been reviewed by many

researchers. It is observed that the rule of mixtures can approxi-

mately predict the longitudinal and transverse mechanical proper-

ties of unidirectional interply hybrids [1,3,5,6]. This is consistent

with the results presented in this paper.

Overall, the objective of the present work was to develop a com-

putational model that is compatible to test hybrid composites with

varying volume fraction of reinforcements and study the effect of

hybridization on mechanical properties of the composite. Future

work in this area would be using similar models to model progres-

sive damage in hybrid composites.
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